Cosmologie avec les supernovae du Zwicky Tansient Facility (ZTF)

Stage numéro : M2-2425-RE-03
Laboratoire :Centre de Physique des Particules de Marseille Case 902
 163 avenue de Luminy - 13288 Marseille Cedex 9
Directeur :Cristinel Diaconu - 04.91.82.72.01 - diaconu@cppm.in2p3.fr
Correspondant :William Gillard - 04.91.82.72.67 - gillard@cppm.in2p3.fr
Groupe d'accueil :Renoir
Chef de groupe :Dominique Fouchez - 04.91.82.72.49 - fouchez@cppm.in2p3.fr
Responsable de stage :Benjamin Racine - Dominique Fouchez - racine@cppm.in2p3.fr - fouchez@cppm.in2p3.fr

Thématique : Cosmologie observationnelle

A la fin des années 90, la mesure de la distance des Supernovae de type 1a (SN1a) et du décalage vers le rouge de leurs galaxies hôtes a révélé que l’expansion de l’Univers était en accélération. Plus de 20 ans après cette découverte, la nature de l’énergie noire qui serait à l’origine de ce phénomène reste inconnue.

Le modèle de concordance ΛCDM décrit un Univers homogène et isotropes aux grandes échelles, soumis aux lois de la relativité générale (RG). Dans ce modèle, la majorité du contenu énergétique de l'Univers provient de la matière noire froide et de l’énergie noire, introduite comme une constante cosmologique. Celle-ci se comporte comme un fluide parfait avec une pression p négative, d’équation d’état p = - rho, où rho est la densité d’énergie.

Certains modèles alternatifs (cf [1] pour une revue) introduisent par exemple des champs scalaires (quintessence) dont l’évolution est responsable de l'expansion accélérée. Ces champs scalaires peuvent varier dans le temps et l’espace. Ils peuvent donc avoir une équation d’état dépendant du temps ainsi que générer des anisotropies de l’expansion.

D’autres modèles proposent de modifier la loi de la gravitation aux grandes échelles imitant le rôle de l’énergie noire.

Aujourd’hui encore, les supernovae restent l’une des sondes les plus précises pour mesurer l’expansion de l’Univers et son homogénéité. Par ailleurs, une partie du décalage vers le rouge des galaxies provient d’un effet Doppler dû à leurs vitesses particulières. On peut alors grâce aux supernovae reconstruire le champ de vitesse à grande échelle, et mesurer le taux de croissances des structures cosmiques. Cela nous permettra de tester la loi de la gravitation.

Une anisotropie de l’expansion aux grandes échelles, une modification de la RG, ou une évolution de l’équation d’état de l’énergie noire, seraient toutes des observations révolutionnaires qui remettraient en cause notre modèle actuel.

Jusqu’aujourd’hui les relevés de supernovae compilaient des données de multiples télescopes compliquant leur analyse statistique. Les relevés du Zwicky Tansient Facility (ZTF: https://www.ztf.caltech.edu/) et de l’observatoire Vera Rubin/LSST (https://www.lsst.org/) vont changer la donne. Ils couvrent la totalité du ciel et mesurent avec précision la distance de dizaines (centaines) de milliers de supernovae proches (lointaines).

Le CPPM travaille sur les données de ZTF depuis 2021, et publiera la première analyse cosmologique en 2025 avec  3000 SN1a. Nous participons à la construction et la mise en place de LSST depuis des années, en se préparant à l’arrivée des premières données cet été.

Dans le groupe, nous travaillons à la calibration photométrique du relevé ZTF, indispensable pour la précision de mesure dont nous avons besoin (cf ubercalibration [2,3]). Un doctorant venant de soutenir sa thèse a développé un pipeline pour simuler ZTF et mesurer le taux de croissance des structures ([4]) et un doctorant actuel adapte cet exercice à LSST et un autre a débuté en 2024 pour l’analyse de 3000 SN1a de ZTF. Par ailleurs deux postdoctorants ont rejoint le groupe pour travailler sur ZTF, et une chaire d’excellence (DARKUNI de Julian Bautista) étend ce travail en combinant ces données avec les données spectroscopiques de DESI.

L’objectif de ce stage est d’adapter ce pipeline d’analyse pour mesurer le taux de croissance des structures avec la totalité des 30000 SN1a de ZTF. Il faudra alors utiliser des algorithmes de machine learning pour classifier les SN1a à partir des données photométriques [5].

Il s’agit donc d’un stage de cosmologie observationnelle, pour un-e candidat-e intéressé-e par la cosmologie et l’analyse de données.

[1] https://arxiv.org/abs/1601.06133

[2] https://arxiv.org/abs/astro-ph/0703454v2

[3] https://arxiv.org/abs/1201.2208v2

[4] https://arxiv.org/abs/2303.01198 https://snsim.readthedocs.io/

[5] https://arxiv.org/abs/2401.02945